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SUMMARY 

Viscous flow of a slightly rarefied gas past a flat plate inclined to a uniform stream is studied analytically on 
the basis of the Oseen equation. A set of singular integral equations for the distribution of Oseenlets along 
the surface of the plate is derived from the slip boundary c~ndition and solved by a method of matched 
asymptotic expansions. The drag and lift forces acting on the plate are calculated correctly to the order of 
the Knudsen number k. The results show that the lift eoeffident increases owing to the slip by an amount 
of O(k I In k I) while the drag decreases. 

1. Introduction 

Rarefaction of  a gas has a large influence on flows at small Reynolds numbers, even though the 

flow velocity is much smaller than the speed of  sound. As the Reynolds number decreases at a 

fixed Mach number,  the nature of  flow changes from continuum to free molecule. Such transi- 

tion was investigated experimentally for the flows past a cynlinder and a flat plate [1 ]. Some 

attempts to illustrate the transition have been made on the theoretical side. When the molecular 

mean free path of  the gas is small but not negligible compared with a characteristic dimension 

of the flow, the rarefaction effect reduces to a slip of  macroscopic (continuum) flow on a solid 

surface. According to the kinetic theory, the magnitude of  the slip velocity is expressed as the 

product of  the mean free path and the gradient of  tangential velocity [2]. Analyses of  viscous 

flows taking the slip boundary condition into account were done for the cases of  a circular or 
elliptic cylinder [3 ,4 ,  5] and a flat plate [6].  

Departure due to slip from the classical no-slip solution can be calculated by a simple pertur- 

bation method if the solid body is of  smooth shape. On the other hand, such a method is not 

applicable to the case of  a flat plate since the velocity gradient becomes infinite at its edges in 
the no-slip solution. Slip modifies completely the flow structure given by the no-slip solution 
near the edges of  the plate. Flow around the leading edge of  a semi-infinite flat plate admitting 
slip was examined by Laurmann [7] using the Oseen equation and by van de Vooren and 
Veldman [8] using the Navier-Stokes equation. Their results showed that the slip velocity at 

the edge takes a finite value proportional to the square root of  the mean free path. Tamada and 
Miura [6] solved the Oseen equation subject to the slip condition for a flat plate of  finite 

length placed at zero incidence. Slip of  the flow was analyzed not only in the vicinities of the 
leading and trailing edges but also over the central part of  the plate. It was found that the slip 
gives rise to reduction of  the drag force acting on the plate by an amount of  O(k I In k I), where 
k is the Knudsen number,  the ratio of  the mean free path to the length of  the plate. 
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The present paper is concerned with slip flow past a plate of finite length when it is inclined 
to a uniform stream. Two-dimensional motion of the gas at small Reynolds numbers is assumed 
to obey the Oseen linearized equation. Then, the problem is reduced to solving a set of singular 
integral equations for the distributions of dragging and lifting Oseenlets along the plate. An 
approximate method of solution similar to that developed in [6] is applied and the formulae 
for the drag and lift forces are obtained. The results indicate a transition from the no-slip 
continuum flow. 

2. Formulation of the problem 

Consider a flat plate placed at an angle of attack a in an otherwise uniform stream of a gas 
with velocity U. Let Uu and Uv be the velocity components of perturbation from the uniform 
flow in the directions of the free stream and normal to it, respectively. We take Cartesian 
coordinates (x, y) normalized by the length of the plate l with the x-axis taken along the plate 
(see Figure 1). The solution satisfying the boundary condition that the perturbation vanishes 
at infinity can be constructed in terms of a suitable distribution along the plate of the funda- 
mental solution known as Oseenlet [9] : 

1 r ' ] 2 _ig 
u- ,~ ,  = ~ . 'o l ~  e (fi(~)--ifz(~)) 

- = '  

+,<, (1) 

Y 

/ I  
/ I 

/ I 
~ / I 
r / /  i 

/ I -J 
X 

> 

0 x 

Figure 1. Configurat ion.  
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where R = Ul/v is the Reynolds number, v the kinematic viscosity, 

F = {(x--~) 2 +y2}1/2 ,  g = a + t a n - l { y / ( x - - ~ ) } ,  X = ( x - - ~ ) c o s a - - y s i n o t  

and Ko and KI are the modified Bessel functions. Since we are concerned with the case when 

the Reynolds number is considerably smaller than unity, this expression for the perturbation 

velocity can be approximated in the neighbourhood of the plate as follows: 

i{1 = 4}  . - i v  = ~ o  I lnffx--~) = +y ) - l n ~ + S  {:lf~)+i:={~)} 

(x -- ~) cos a - - y  sin ct {((x _ ~) cos a - -y  sin a) -- i ( ( x  -- ~) sin a + y cos a)} 
( x _  ~)2 + y 2  

{f, (~) - i/2 (~)}] d~, (2) 

where 3' = 0 . 5 7 7 2 . . .  is the Euler constant. It should be noted that this is a solution to Stokes 

approximation neglecting the convective effect. 
The slip boundary condition on the surface of the plate is given by 

(a~ av sin a ) s g n  (y), ( l + u )  c o s t ~ + v s i n a  = k cosc t+By 

vcosot-- (1  + u )  sint~ = 0 at y = -+0 ( 0 < x < l ) .  (3) 

Substitution of (2) into (3) leads to a set of integral equations for the distribution functions 

f l (x )  and f2(x): 

is,(( 4 I ( 4 )  } 1 + - -  l n l x - - / j l - - l n - - + 3 ' - - I  f l (~)- -  l n l x - - ~ l - - l n ~ + 3 '  f2(~)tant~ d~ 
27r o R 

= k { f l ( x )  - - f2 (x )  tan a}, 

41 ( 4 ) / 1+~-~ l n l x - - ~ l - - l n ~ + 7  f~(~)+ l n l x - - g l - - l n ~ + 7 + l  f2 (~)co ta  d~ 

= 0 ( 0 < x  < 1). (4) 

The integral equations (4) are not amenable to a simple procedure and we shall seek a solution 

for small k in an approximate way. We consider separately narrow regions near the leading and 
trailing edges, where the slip produces a large effect, and, a central part of the plate, where 
deviation from the no-slip solution is small. Matching the solutions valid in these regions makes 

it possible to get an overall solution. 
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It is convenient to use the stretched variables given by 

t = k - I x ,  r = k - l ~  (5) 

for discussing the behaviour of the solution in the vicinity of the leading edge. We differentiate 

(4) with respect to x and introduce the new variables. Replacing k -1 approximately by infinity 
yields the simplified forms of equations valid in the narrow region near the leading edge: 

t 1 {gl  (I:) - -  g2 (r) tan or}dr = 2,r d o -- r dt  {g' (t) --g2 (t) tan a}, 

/- 
-~o t-rT---- {g, (r) + g2 (r) cot aidr = 0 (t > 0), (6) 

where Cauchy principal values are taken for the integrals and 

&(t)  = f l (kt)  ( j  = 1,2). (7) 

It should be noted that direct application of the approximation made above to (4) without 
differentiation would bring about a meaningless result of divergence of the integrals since both 
gl (t) and g2 (t) change like t -1/2 for t >> 1 as is seen later. 

3. Approximate solution 

The integral equations (6) can be solved by means of the Wiener-Hopf technique. The leading 
edge solution valid for x = O(k)  is (see Appendix A) 

= ----7---Jo {P(P + sin -~p - P(P) + 7 dp 

k 11/2 
+ B sin2a \7-xx] ' 

k , ( x )  = rt 0 {P(P + ½)}-'/2sin p--~-~nP(p)+ dp 

(5) + B sin t~ cos a (8) 

where A and B are certain constants and 



f P In (2s) 
P(P) = o s 2 - ¼  ds" 
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(9) 

The factors A and B are determined by the principle that this solution should match the solu- 
tion valid in the central region of  the plate. The asymptotic form of  (8) for x >> k is 

fie(X) ~ (21/2A cos 2 ot + B sin 2 t~) (k/zrx) 1/2, 

f2e(x) ~ ( -- 21/2A + B) sin ot cos ot(k/Trx) 1/2 . (10) 

Within the Stokes approximation,  the flow velocity is symmetric with respect to the center of  

the plate even under the slip boundary condition while the perturbation pressure is anti- 

symmetric. Accordingly, the distribution functions fl and f2, which represent the local force 

acting on the plate, are also symmetric and the trailing-edge solution is given by fie (1 - - x )  and 

Ae (1 --x). 
Slip of  the flow is supposed to be small over most of  the plate except for narrow edge- 

regions. Hence we may take the no-slip solution as the main solution to the first approximation 

valid in this wide domain. The no-slip solution of  (4) with k = 0 has been obtained by Miyagi 

[10] in the form: 

Am(X) = 2 (T- -cos2o t )  (T 2 --cos2ct) -1 {x(1 - -x)}  -1/2, 

Am(X)  = 2 sin a cos a (T 2 --  cos2ot) -1 {x(1 - -x)~  "1/2 , (11) 

where 

T = in (16/R) --  7. (12) 

The leading-edge solution should agree with the main solution in an overlap domain of  
1 >> x >> k. From comparison of (10) with (11) for small x,  we have 

A = ( T -  1) (T  2 - - c o s 2 a )  -1 (2n/k) 1/2, 

B = 2T(T  2 -- cos2a)  -1 (rtlk) u2. (13) 

A solution which holds uniformly over the whole of  the plate can be composed in terms of  

the leading edge, main and trailing edge solutions [11 ].  The overall solution to the first order is 

Au(X) = fse(X) + A m ( X )  + fie(1 - - x )  -- 2 ( T - - c o s 2 a )  (T 2 - - cos2a )  -l 

{X -112 "]- (1 --X)-1/2 }) 

f2u(x) = f2e(x) +f2ra(x) + f2e(1 - - x )  -- 2 sin 0¢ cos a (T 2 --  cos2a) =1 

{x -1/2 + (1 - - x )  -1/2 }. (14) 
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Our attention has been directed to the marked slip effect near the edges of the plate. The 
slip over the central part of the plate is small locally, but it may produce a significant correction 
to the force acting on the plate since the central region is much wider than the edge regions. We 
must examine small perturbation to the main solution (11). The singularities of (11) at the 
edges of the plate, however, make a standard perturbation analysis inapplicable. In order to 
avoid this difficulty, we put 

f l (x)  = f su(x)+ fi/(x) (f!<~f.iu,j = 1,2). (15) 

Substituting (15) into (4), we get a set of integral equations f o r / l ( x )  and f2(x) to O(k)  
(see Appendix B): 

,{(, 4 ) ( 4):.,,tan:l. ' 2-~fo n l x - - ~ l - - l n ~ + 3 , - - 1  f l ( ~ ) - - l n l x - - ~ l - - l n ] ~ - +  

. 1 [ / ,  , ) 
= 2kT2 cos2o t [X(I__x)]l l  2 XII2 ( l__x)l /2 + l n ~ - + 3 ' + l  

1 1 + x  i/2 
In (1 --x)  + x--~ln 1 - - x  1/2 - -  + l n x +  

~)~ l+(l--x) '/2) 4 j.l 
(1-- In 1-- ( i - -x)  ~/1 - - ~  o 

1 /+ 1 ) 2 / l n  4 a) 0 )1 l _ x r / 2  1_(1__x)~72 lnr/dr/--~--~t ~ - - 3 , + c o s  2 n 2 + ' ) , +  1 , 

2-'~1 f: [(ln Ix-- ~ ' --ln R4---I- 7t f'(~) I- ( lnlx-~ '-ln ~q-R 3' + 1) f2( ' )  cot ot ) d, 

4kcos2ct T - -1  (1 2 ) 
. . . . .  n + 7 +  1 ( O < x <  1). (16) 

n 2 T 2 -- cos2ot k- 

The integration values o f f1  and f2 over 0 < x < 1, which are required for evaluation of the 
force, can be calculated directly from (16). 

4. Slip effects on the drag and lift forces 

The drag and lift forces are related to the distribution functions of Oseenlets f l (x)  and f2(x) 
respectively [9]. Taking the conventional definitions of the drag and lift coefficients, we have 

4 1 4 A ( x )  dx.  (17) 



Integrating (14) correctly to O(k) yields 
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~1 ' T--c°s2°t  {1 4kc° s2a  T- -1  
o flu(x)dx = 2rr T2 _cos2o  t -- rr 2 T--  cos 2or l n ~ - + 7 +  

_ 21rs inacosa  I + - ~ - ( T - - 1 )  In 7 + 1  fo :~,,(~)dx r ~ - c o : ~  k (18) 

The first terms on the right.hand side represent the result for the no-slip case, and the second 
terms imply the corrections arising from the slip in the narrow edge regions. Integrating (16) 
with respect to x after multiplying it by {x(1 x)}-l/: - -  , we get 

fl'o 8kcos2a T--1 ( r  2 T 2T-1 ) ( 2x ) f l ( x )dx  = • 1 --~' In - ; -+" /+  1 rt -cos2a -cos2,~ 

:. .sin cos  ( ) . n  
T2 T--~l 1 T2 -~-os2a 7 +  1 o f 2 ( x ) d x  = 7r -cos2a k 

(19) 

The corrections produced by small slip over the central part of the plate are thus comparable 
to those in the edge regions. 

Substituting (15) into (17) together with (18) and (19), we finally get 

81r (T-cos2a)  ( 4 ( T - 1 )  2 cos2a 
CD = ~ - ~  --~o--~) ~1 ~ ( r - co :~ ) ( r  ~ -co:~)  

4rr sin 2a / 4T(T- -  1) 
CL = R(T2 - -c°s2a)  /1 + rr(T ~ _.cos2a) 

n k 7 + 1  

The presence of Ink  terms reflects a singular property of the flow at the leading and trailing 
edges. These formulae show that the slip decreases the drag but increases the lift by amount 
of O(k link I). 

The Knudsen number is related to the Reynolds number and the speed ratio S, that is, the 
ratio of the uniform velocity to the most probable molecular speed [ 12] : 

'l  

k = XS/R, (21) 

where ~ = ~-n -1:2 for spherical molecules. Using this relation, we can express the drag and lift 
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coefficients as functions of  R and S. Figures 2 and 3 show respectively the variations of  CD and 

C z with R for values of  S < 0.16 and a = 3 0  °. The limit values for the free molecule flow 

(k ~ o~) obtained from the kinetic theory [2] are also indicated by the dashed lines for com- 
parison. The curves of  Co and CL deviate from the results for the no-slip flow (S = 0) as the 

Reynolds number decreases, showing part of  transition to the free molecule flow. The drag 

coefficient becomes small as S increases at a fixed R of  any value. On the other hand, the 

lift coefficient increases with S at a fixed R in a range of  slip flow but takes a smaller value for 

larger S in the limit of  free molecule flow. Therefore, we may conclude that the lift coefficient 

increases first, attains a maximum and then drops to a limit value as S increases at a fixed R. 

Variations of  Co and CL with a fo rR  = 0.2 andS  = 0.01 (k = 0.09) are shown in Figure 4. 

The results for no-slip flow are also given in the same figure for comparison. Slip produces the 

largest effect on C o at a = 0 °, where drag is smaller than the no-slip value by about 10%. 

Deviation of  C D from the no-slip curve reduces as an angle of  attack becomes large. No differ- 

ence due to slip can be seen at a = 90 o, for the shearing stress on the surface of  the plate is 

zero in the no-slip solution for this angle. The lift coefficient takes a higher value than in the 

no-slip case by about 40% for any a in this example. 
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Appendix A 

We put the integral equations (6) in such a form that Fourier transformation may be applied: 

r ~  d ~._**eKl(e It -- r 1) sgn (t -- r) {gl,_(r) --g2-(r) tan a}dr -- 27r ~-~ {ga-(t) --&_(t) tan ,+} 

= h , + ( t ) ,  

f_ieKl ( e l / - -  r I)sgn (t -- r) {gl-(r) + g2-(r) cot or}dr = h2+(t) (e -+ + 0), (A1) 

where 

g/_(t) = { ; l ( t ) ( t>O)  h/+(t) = {0 ( t > 0 )  
(t < 0)' hi(t) (t < 0) (j = 1,2). (A2) 

Both h i and h 2 are unknown functions at this stage. A convergence factor e has been introduced 
for the existence of the Fourier transform and the limit of e-+ 0 should be taken after the 
solution is obtained. The Fourier transform of (A1) is 

27ripAl(p, e) {GI-(p) --G2-(p) tan or} = -Hx÷(p),  

7rip A2 (p, e) {Gx-(P) + G2_(p) cot a} = -H2+(p), (A3) 

where 

=f?.  g/_(t)e-'tdt, H/+(p) = f L  hl+(t)e-'tdt (j  = 1,2), c (p) 

A , ( p , e )  = 1 + ½ ( p 2  + e2)-, ,2,  

A2(P, e) = (p2 + e2)-1/2. (A4) 

Here the subscripts + indicate the regularity of the functions in the upper and lower halves of 
the p-plane respectively. The Wiener-Hopf technique requires that Al(p, e) and A2(P, e) be 
factored into the form 

A/(p, e) = Aj_ (p, e)/Aj+(p, e) ( i  = 1,2), (AS) 

so that (A3) reduces to 

ipAr(p, e) {GI-(P) -- G2_(p) tan t~} = -- Al+(p, e)Hl+(p)/2rr, 

ipA2_(p , e) {GI-(p) + G2-(p) cot tv} = -- A:+(p, e)H2+(p)/zr. (g6) 
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Factorization for Al (p, e) was performed by means of a standard procedure to yield [6] 

Al_(p,0) = 1 + exp ~-~sgn(p){P(Ipl)- -½rr 2} (A7) 

for real p, where 

P ln(2s) 
P(P) =fo  ~-~-_--i ds. (A8) 

The function A2(p, e) is easily factored and we get 

A2-(p, 0) = p-X/2. (A9) 

The left-hand side of the equations of (A6) are the analytic continuations of the functions on 
the right-hand side. Therefore, they represent two entire functions which are shown to be 
constants A and Be (~) i  (say) to ensure the existence of Fourier inversions. As a result we have 

B sin2 o~ • _ _ e ( ~ / 4 ) z /  A cos  2a  + pXn j 
Gl-(p) = --i  pAI - (p ,  O) 

{ p A  A,_(p, 0) B } G2-(p) = i sin a cos a p i n e  Or/4 )i . (A10) 

Fourier inversions of (A 10) together with (5) and (7) yield the leading.edge solution (8). 

Appendix B 

Substituting (15) together with (14) into (4), we can rewrite the integral equations in the form 

4 ) (  ) / Jo ln,x- l-ln +3'-I /,(0- ln'x- '-ln4+3' /2(0tano  

--  l n l x - - ~ l - - l n - -  = k [ {f~ u (x) + f,  (x) } -- {]2u (x) + )7 2 (x) } tan or] ~ f o R 

) {  2(_._T--cos2ot_____)((.,n + ( 1 _ ~ ) - l n ) } _  (ln Ix--~ I 
+ 3'-- 1 fie (~) + fie(1 --~) T2 _cos2a  

4 ) {  f2e(~) + f2e(1 __ ~ ) . . . . . .  -,,z ~)-,/2) } ] --ln ~- + 3' 2 sin t~cos a ..^ 
T2 _cos2,v (~ + ( 1 - -  tant~ d~, 
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2--~- fo l n l x - ~ i - l n 4 +  fl(~) + 

4){  
=----2rr J o ln lx--~l-- ln~-+7 fle(~) +f2e(1 -- ~) 2 ( T -  c ° s 2 a ) T 2  _ cos2t~ 

- 1 ( 4 ) /  x(~-~/2+(l--~) ~/2) + l n l x - ~ l - l n ~ + 7 + l  j~e(~)+f2,(1--~) 

2sin~cosa ,/2 ~)-,/2)} ] 
~,~- L c--~-~s 2 ~ (~- +(1--  cots d~. 

l 4 t / l n lx - -~ l - - l n~+3 ,+ !  f2(~)cota d~ 

The following equations hold approximately for small k [6] : 

- 1  

-" 2 {1--k  ( l n 2 + 7 + l l }  

(B1) 

(B2) 

and 

f/u (x) - J~rn (x) (/ = l, 2), (B3) 

(27rk)_l/Zfilnlx_~ld~fo{p(p+½)~,/2sin {~ 1 rr} -~ p -- P(p) + "~ dp 

- 2 {In(1 --x)+xl/21n - 1--x 1 / 2 - 2  ----rr - - ~ +  In -~7+1 

l+x 1/2) 1 lnr/ , ] 
x l n ( 1 - - X ) + x - ~ l n ~ ] - - 4 f o  l_---~-~ar/] (B4) 

in a central region of the plate where x(1 --x)>> k. Making use of these equations and the 
formula 

1 f 
1 /2 lnlx--~ld~ = 2 { l n ( 1 - - x ) + x l / 2 1 n - -  f0 ( 

1 + x  1/2 } 
1 --x ~/2 2 (BS) 

in (B1), we get the equations (16) for small perturbations in the central region. 
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